
[Show Toolbars]

Lesson 9.1.3

9-28. See below.

a. Answers vary. One possible solution is shown below.

- b. Multiple solutions are possible.
- c. $SA = 52 \text{ units}^2$; $V = 24 \text{ units}^3$

9-29. See below.

- b. 120 cm^2
- c. 54 cm^3
- d. Area of hexagon = $24\sqrt{3}$ in², SA = $48\sqrt{3} + 168 \approx 251.1$ in², V = $24\sqrt{3} \cdot 7 = 168\sqrt{3} \approx 291$ in.³

9-30. SA = $80\pi + 50\pi = 130\pi \approx 408.41$ units²; V = $200\pi \approx 628.32$ units³

9-31. See below.

- a. No. Volumes of individual pennies do not change, so total volume does not.
- b. In each case the volume remains the same.
- c. ≈ 628.32 units³, it is the same as the volume of the cylinder in problem 9-30.

9-32. It does not hold enough water;
$$V = \pi(1)^2(3) = 3\pi \approx 9.42 \text{ ft}^3$$
; $\frac{9.42 \text{ ft}^3}{1} \cdot \frac{1 \text{ gallon}}{0.1337 \text{ ft}^3} \approx 70.5 \text{ gallons}$

9-33. 24 square units; As a midsegment, *DE* must be half the length of *BC*. If the ratio of lengths is 0.5, then the ratio of areas is $0.5^2 = 0.25$.

9-34. Base Area = 509.23 cm²; Height = 5 cm; $SA = 1438.44 \text{ cm}^2$