Lesson 9.1.3

9-28. See below.

a. Answers vary. One possible solution is shown below.

b. Multiple solutions are possible.
c. $\mathrm{SA}=52$ units $^{2} ; \mathrm{V}=24$ units 3

9-29. See below.

b. $120 \mathrm{~cm}^{2}$
C. $54 \mathrm{~cm}^{3}$
d. Area of hexagon $=24 \sqrt{3} \mathrm{in}^{2}, \mathrm{SA}=48 \sqrt{3}+168 \approx 251.1 \mathrm{in}^{2}, \mathrm{~V}=24 \sqrt{3} \cdot 7=168 \sqrt{3} \approx 291 \mathrm{in}^{3}{ }^{3}$

9-30. SA $=80 \pi+50 \pi=130 \pi \approx 408.41$ units $^{2} ; \mathrm{V}=200 \pi \approx 628.32$ units 3

9-31. See below.

a. No. Volumes of individual pennies do not change, so total volume does not.
b. In each case the volume remains the same.
C. ≈ 628.32 units 3, it is the same as the volume of the cylinder in problem 9-30.

9-32. It does not hold enough water; $\mathrm{V}=\pi(1)^{2}(3)=3 \pi \approx 9.42 \mathrm{ft}^{3} ; \frac{9.42 \mathrm{ft}^{3}}{1} \cdot \frac{1 \text { gallon }}{0.1337 \mathrm{ft}^{3}} \approx 70.5$ gallons

9-33. 24 square units; As a midsegment, $D E$ must be half the length of $B C$. If the ratio of lengths is 0.5 , then the ratio of areas is $0.5^{2}=0.25$.

9-34. Base Area $=509.23 \mathrm{~cm}^{2} ;$ Height $=5 \mathrm{~cm} ; \mathrm{SA}=1438.44 \mathrm{~cm}^{2}$

